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Password evolution

Multi-user environments traditionally employ password-based
authentication:
• User is given a login l and a password p (or he generates
them);

• Salt s and H(s, p)) are generated and stored;
• When a user logs in, he sends (l , p) to the server;
• Server matches (l ,H(s, p)) with its database {li ,H(si , pi )}.

Iterating H many times makes the password cracking harder, but
how hard?
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Switch architecture problem

Whereas hashing is done on server hardware (not much different
from desktop), an adversary may employ graphic cards (GPU) and
dedicated hardware (FPGA or even custom ASICs), where each
password computation is much cheaper.

Solution: use a hash function, which takes similar time to compute
on different architectures. This suggests memory-hard functions,
which intensively use a large amount of memory.
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ASIC advantage

To understand the efficiency of other architectures, we turn to the
Bitcoin hardware
https://en.bitcoin.it/wiki/Mining_hardware_comparison:

• Intel Core computes 217 hashes per joule (=watt*sec).
• Best AMD GPU compute 222 hashes per joule (=watt*sec).
• Best FPGA compute 225 hashes per joule.

• Best ASICs compute 232 hashes per joule.
Memoryless computations are about 30000 times as cheap on
ASICs as on typical server’s hardware.

What about memory-intensive schemes?
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Theory of memory-hard functions

Back in 1970s, computer scientists explored functions computed on
multitape Turing machines.

What can be computed in time T , can be computed in space T
logT ,

and this bound is tight [HPV’77, PTC’77].

There are provably hard functions (for 1
logT memory reduction and

asymptotically).
How high can be computational penalties for 1

4 memory reduction?
Unknown.
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Tradeoff cryptanalysis



Time-memory tradeoff

Tradeoff: how much time is needed to compute the same function
with less memory.

Time

Space
Normal computation

• There could be other tradeoffs: computation-memory,
energy-memory (for implementations), time-area, etc.



Toy example



Toy example

Hash function with two iterations over memory.
• Vi = F (Vi−1);
• V ′N = VN ;
• V ′i = F (V ′i+1||Vi ).
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Trivial tradeoff

Compute the hash using N
m + m memory units and calling the hash

function 3N times instead of 2N:
• Store every m-th block;
• When entering a new interval, precompute its m inputs.

Optimal point is m =
√
N.
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If multiple hash cores are available, the scheme latency is still 2N
hash calls, since all the addresses are known and data can be
prefetched.
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Scrypt

Scrypt [Percival’09]:
• Sequential initialization: Xi ← H(Xi−1);
• Random processing:

for 1 ≤ i ≤ N

A← H(A⊕ XA).

Problems:
• Too many parameters and subfunctions;
• Allows trivial tradeoff:

Memory× Time = O(N2);



PHC

Password Hashing Competition (2014-2015): struggle to find
faster, more secure, more universal schemes.

• 22 schemes in competition;
• Vast majority claim resilience to GPU/ASIC cracking;
• Only a few really tried to attack their schemes (standard
practice in cryptography designs);

• These attacks can be much improved, as we see later;
• And we will see how ASIC-equipped adversaries can exploit
them.

We considered three schemes, which have come out of academic
crypto-community and have clear documentation.
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Catena-λ

Catena [Forler-Lucks-Wenzel’14]:
• Stack of λ bit-reversal permutations (λ = 3, 4):

V L[ABC ] = H(V L[ABC − 1],V L−1[C B A]).

000 001 010 011 100 101 110 111

111000
001

010 011 100 101 110

111000
001

010 011 100 101 110

In

Out

• Full-round hash function (Blake2);
• Proof of tradeoff resilience (extension of Lengauer-Tarjan
proof for λ = 1):

SλT = Ω(Nλ+1)

Memory fraction 1
q should imply penalty qλ.
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• Consider vertices [AB0], [AB1], [AB2], . . ., where A and 0, 1, 2
are k-bit values;

• To compute [ABC ] at level T (C is also k-bit), we need
[C B A] at level T − 1;

• [C B A] refers to [ABC ] at level T − 2.
• Note that the middle part is either B or B .
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Tradeoff cryptanalysis
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Efficient computation of [AB∗] at level 4:
• Suppose that we have stored all vertices [∗ ∗ 0] at all levels
(2n−k vertices per level);

• Compute [∗B∗] at level 0 (22k steps);
• Use these values to compute [∗B∗] at level 1 (22k steps);
• Use these values to compute [∗B∗] at level 2 (22k steps);
• Use these values to compute [∗B A] at level 3 (A2k steps);
• Use these values to compute [AB∗] at level 4 (2k steps).

In total 3.5 · 22k + 2k hashes for 2k vertices.



Cryptanalysis-II

Eventually we have the following penalties for l < n/3− 2:

Memory fraction Catena-3 Catena-4

Penalty
1
2 7.4 13.1
1
4 15.5 26.1
1
8 30.1 51.5
1
2l 2l+1.9 2l+2.7

So the penalty is 4q for memory fraction 1
q . Tradeoff for Catena-3:

MT = 16N2;
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Argon

Argon [Biryukov-Khovratovich’14]:

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Blockcipher-based design:
• n × 32-matrix of 16-byte blocks;
• Row-wise nonlinear transformation (48 reduced AES cores and
a linear layer) with guaranteed branch number (at least 8
inputs for 1 output);

• Column-wise permutation (n data-dependent swaps based on
the RC4 permutation).



Tradeoff

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

When trying to attack apply the following strategy:
• Store permutations, not blocks (about 1

2 of total memory);

• When an element is needed, recompute it;
• Parallelize the RC4 permutation: ≈ 250 elements can be read
in parallel without bank collisions.

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

1 lookup8 lookups64 lookups 2 AES calls16 AES calls128 AES calls512 AES calls

Last level: one memory access is replaced with a tree of depth 7 of
5-round AES, which increases latency by a few times.
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Further tradeoff

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Mix

1 lookup8 lookups64 lookups 2 AES calls16 AES calls128 AES calls512 AES calls

If the last permutation can not be saved, it has to be recomputed
each time we need an element: 218-increase in latency.



Computational penalties

Penalties slightly depend on the memory size:

Fraction \ Memory 16 MB 128 MB 1 GB
1
2 139 160 180
1
4 218 226 234

1
8 231 236 247

Tradeoff:

T =
N4

(cN)3N/M



Lyra2



Lyra2

Lyra2 [Simplicio-Almeida-Andrade-dos Santos-Barreto’13]:

64

1

2

R

1

R × 64 matrix of 64-byte blocks. Two phases:
• Setup phase: deterministic generation and update of rows;
• Wandering phase (T ≥ 1 iterations): sequential and
pseudorandom update in parallel.

Claims high speed (1.2GB/sec for T = 1).



Setup phase

F — stateful function with 128-byte state (sponge construction
based on hash function Blake2b).

M[i ]← F (M[i − 1],M[2k − i ]),

M[2k − i ]⊕ = M[i ];

F

M [8]

M [9]

M [14]

M [11]

M [5]

M [6]

M [7]

M [12]



Setup phase

Overall picture:

0

R



Tradeoff analysis: Setup phase

Strategy:
• Store first 2l rows;
• Store every q-th row;

Then q consecutive rows are determined from q(r − l) previous
rows, which are precomputed.

i

2r − i

2r−1

q

2l

Setup phase can be computed with little penalty and memory.



Wandering phase

Wandering phase:

M[i ]← F (M[i − 1],M[ri ],

M[ri ]⊕ = M[i ];

Here ri – pseudorandom function of M[i − 1] (i.e. determined at
the time of computation).

time

blocks

i

i− 1

r[i]



Tradeoff analysis: Wandering phase

Pseudo-random dependency seem to impose prohibitive penalties:

time

blocks

i

i− 1

r[i]

Trees may cover the entire matrix.



Tradeoff analysis: Wandering phase

First idea: split the computation into levels, store all links within
the level.

0 n
4

n
2

3n
4

n



Tradeoff analysis: Wandering phase

Second idea: store everything that refers to the most expensive
rows (keep a list).

1 R

top-10%



Tradeoff analysis: Wandering phase

Third idea: note that rows are updated column-wise. Good for
CPU cache, but even better for ASIC-equipped adversaries.
• Store initial state of each row;
• Compute new row columnwise;
• So the extra latency is introduced before the first column only.

f f f

Depth d Depth d

Delay d Delay 1

Depth d

Delay 1



Penalties

Penalties:

Setup phase Wandering phase (T = 1)
Memory fraction Penalty

1
2 1.5
1
4 2
1
8 3
1
16 4

Memory fraction Penalty
1
2 2
1
4 6.6
1
8 111.7
1
16 216

When we combine two phases, we count how many intervals of
length q are accessed at the Wandering phase.
Total:

Memory fraction Penalty
1
2 118
1
3 602
1
4 2241
1
6 14801



Overall

Catena, Argon, and Lyra2 tradeoffs for 1 GB:

Memory fraction Penalty

Catena-3 Argon Lyra2 (T = 1)
1
2 7.4 180 118
1
3 11.2 229.5 602
1
4 15.5 234 2241
1
8 30.1 247 218



Optimal ASIC implementations



Password crackers

History of password crackers:
• 70-90s: regular desktops;
• 00s: GPUs and FPGAs;
• 10s: dedicated hardware?

Let us figure out how a rich adversary would build his password
cracker.
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ASIC

ASIC (application-specific integrated chip) — dedicated hardware.
• Large design costs (mln $);
• Production costs high in small quantity;
• The most energy-efficient systems.

When passwords are of high value, an adversary may want to design
a password-cracking scheme.
• Parallelism in computations;
• Parallelism in memory access (very difficult for all other
architectures);

• In the long term electricity will dominate the costs.
So let us minimize the energy needed to compute a single password.
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Straightforward implementation

A straightforward implementation of a password hashing scheme
typically has a huge memory block and a small computational core
block.

Memory

Core



Tradeoff implementation

Less memory, more computations:

Memory

g

g

g g

g

g

g Core

Extra core

Time may not grow:
• If transformations are data-independent, they can be
precomputed. Protection against cache-based timing attacks
makes the scheme more vulnerable to tradeoff attacks.

• Data-dependent transformations introduce some latency.
However, at the other tree levels all data dependencies are known.
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Tradeoff evaluation

What determines the cracking cost? The following metrics can be
used:
• Computational complexity (total number of operations).
Rather easy to compute, but inaccurate for memory-hard
functions.

• Time×area. Good approximation to energy consumption if all
the elements consume the same energy. Needs to know
latencies and area requirements of all operations.

• Energy cost. More relevant when idle memory, active memory,
and logic consume different power (actual for static RAM).
Needs to know energy requirements of all elements.



Our assumptions

So far no one has placed that much memory on a single ASIC, so
the exact behaviour of such chip is unknown. We make the
following assumptions:
• Static RAM is more energy-efficient;
• The memory can be partitioned into 216 banks (two levels of
hierarchy);

• All banks can be read and written in parallel with average
latency of 3 cycles;

• We ignore the area of communication wires between memory
and computational cores. OK for our 216 memory banks and
not so many cores, but can be a problem for much more dense
structure.



Energy model

Energy model:

E = LT +NMEM +NCEC

total
energy

scheme
time

static RAM
power consumption

memory
operations

access
energy

hash
calls

hash call
energy

Three main contributors to the energy cost:
• Leakage power of static RAM;
• Memory access energy;
• Hash computation energy.
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Reference platform

We take the best implementations scale them to the reference
platform: 65nm CMOS technology, 1.2V supply voltage, 400 MHz
frequency.

• AES: scaling down 22 nm, 1GHz implementation [Intel’2014],
1 cycle per round;

• Blake2b: scaling up and doubling 90nm, 286 MHz
implementation of Blake-32 [Knezevic et al.’2011], 2 cycles per
round;

• Static RAM: 65nm, 850 MHz implementation [Rooseleer et
al.’2014];



Reference platform

Primitive Power Area Latency
AES (full) 32 mW 17.5 kGE 10

Blake2b (full) 13.3 mW 19 kGE 20
16 KB – 32bit memory bank 12.6µW 192 kGE 3

Operation Energy
1 Gcall (230) of AES 800 mJ
1 Gcall of Blake2b 867 mJ

1 GB memory reads/writes 1 mJ

Therefore, an AES core is equivalent to 700 bytes in area. One run
of AES costs as much as reading 800 bytes.



ASIC implementations of tradeoffs
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Catena

All Catena operations are independent of the data (to avoid
cache-based side-channel attacks).
• This allows to precompute the hash tree by the time it is
needed;

• If the memory is reduced by factor q, we add λq Blake2 cores
on the chip.

1 GB Catena-3:

Total energy Time Memory Blake
Fraction Read Energy Gcalls Energy

192 J 240 sec 1 6 GB 192 J 0.06 54 mJ
192
q + 0.2q J 240 sec 1

q 12 GB 192
q J 0.25q 0.2q J

Optimal tradeoff point: q = 32, 12 J per password.



Argon



ASIC implementation

We use the following strategy:
• Always use 210 AES cores for the Mix operation, this makes
the latency of the AES part very low;

• When 1
2 of memory is used, the latency grows by the factor of

6;
• When 1

3 of memory is used, the latency further grows by the
factor 223.

1 GB Argon:

Total energy Time Memory AES (5 rounds)
Fraction Read Energy Gcalls Energy

209 mJ 0.02 sec 1 21 GB 34 mJ 0.43 175 mJ
33 J 0.1 sec 1/2 10.3 GB 52 mJ 83 33 J

139 MJ 8 hrs 1/3 2 PB 10 kJ 228.5 139 MJ

Efficiency drops very quickly.
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ASIC implementation

Lyra:
• Store the initial values of the state (sponge);
• Compute the dependency tree columnwise;
• Quite large penalty for the setup phase, subject to improve.

Energy Time Memory Blake (1 round)
Fraction Read Energy Gcalls Energy

71 mJ 0.08 sec 1 6 GB 68 mJ 0.03 3 mJ
318 mJ 0.10 sec 1/2 7.4 GB 50 mJ 3.7 269 mJ
1.4 J 0.15 sec 1/3 37.6 GB 77 mJ 18.8 1.4 J
5.2 J 0.17 sec 1/4 140 GB 173 mJ 70 5.1 J

Memory-full implementation is energy-efficient. Growth is not that
high though.



Lyra2

Is Lyra2 secure?

Depends on the metric.

Time× area Memory Cores
Fraction Size (MGE) Number Size (MGE)

120 1 1536 1 0.02
80 1/2 768 179 3.2
76 1/3 512 642 11.6
71 1/4 384 2079 37.6
91 1/5 307 2992 54.2

Optimal point at 1/4 of memory, as below that point the scheme
execution time grows too fast.
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Final remarks

• All numbers are preliminary and subject to improve;
• Much more time is needed to evaluate the security of most
promising candidates (at least 2 months per submission);

• ASIC implementations and related tricks (data-independency,
parallelization) are underestimated;

• Full report to be published soon (raw data can be given to
anyone to verify);

Other candidates follow, stay tuned.

UPDATE: RIG can be attacked with the same techniques.
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Questions?
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