
Argon2 and Egalitarian Computing

Alex Biryukov Dmitry Khovratovich

University of Luxembourg

January 7th, 2016



I. Unfair battle



Attack-defence paradigm

Attackers have always been more powerful than defenders:

• Large and variable resources;

• One weakness is sufficient;

• Can spend much time.



Attack-defence paradigm

Defenders can

• Harden the protection (e.g. increase the key length);

• Sometimes restrict the attack vector (e.g. limit the exposure
time).

Secure cryptographic algorithm with sufficient key length –
solution for many confidentiality, integrity, signatures, etc..



Keyless setting

Sometimes, however, we do not have (long) keys.

• Reliance on human memory (password-based data protection,
password-based authentication, PINs, etc.);

Brute-force attacks become possible (e.g., guess a PIN).

Moreover, integrity might become a problem in

• Unencrypted networks (P2P, blockchain).



Understanding brute-force

Brute-force attacks (such as key guessing) are most efficient on
custom hardware: multiple computing cores on large ASICs.

Practical example of SHA-2 hashing (Bitcoin):

• 232 hashes/joule on ASIC;

• 217 hashes/joule on laptop.

Consequences

• Keys lose 15 bits;

• Passwords become 3 lowercase letters shorter;

• PINs lose 5 digits.

ASIC-equipped attackers are the threat from the near future.

ASICs have high entry costs, but FPGA and GPU are employed
too.



Understanding brute-force

Brute-force attacks (such as key guessing) are most efficient on
custom hardware: multiple computing cores on large ASICs.

Practical example of SHA-2 hashing (Bitcoin):

• 232 hashes/joule on ASIC;

• 217 hashes/joule on laptop.

Consequences

• Keys lose 15 bits;

• Passwords become 3 lowercase letters shorter;

• PINs lose 5 digits.

ASIC-equipped attackers are the threat from the near future.

ASICs have high entry costs, but FPGA and GPU are employed
too.



Understanding brute-force

Brute-force attacks (such as key guessing) are most efficient on
custom hardware: multiple computing cores on large ASICs.

Practical example of SHA-2 hashing (Bitcoin):

• 232 hashes/joule on ASIC;

• 217 hashes/joule on laptop.

Consequences

• Keys lose 15 bits;

• Passwords become 3 lowercase letters shorter;

• PINs lose 5 digits.

ASIC-equipped attackers are the threat from the near future.

ASICs have high entry costs, but FPGA and GPU are employed
too.



We need to slow down such attackers without
burdening the defenders.



II. Argon2 for passwords



Password-based authentication

Keyless password authentication:
• User registers with name l and password p;
• Server selects hash function H, generates salt s, and stores

(l ,H(s, p));
• User sends (l , p′) during the login;
• Server matches (l ,H(s, p′)) with its password file.

Problems:

• Password files are often leaked
unencrypted;

• Passwords have low entropy
(”123456”);

• Regular cryptographic hash
functions are cracked on
GPU/FPGA/ASIC;

• Many iterations of SHA-256 do
little help as this slows down
everyone.



Password-based authentication

Keyless password authentication:
• User registers with name l and password p;
• Server selects hash function H, generates salt s, and stores

(l ,H(s, p));
• User sends (l , p′) during the login;
• Server matches (l ,H(s, p′)) with its password file.

Problems:

• Password files are often leaked
unencrypted;

• Passwords have low entropy
(”123456”);

• Regular cryptographic hash
functions are cracked on
GPU/FPGA/ASIC;

• Many iterations of SHA-256 do
little help as this slows down
everyone.



Solution

Since 2003, memory-intensive computations have been proposed.

Computing with a lot of memory would require a very large and
expensive chip.

Memory

Core

With large memory on-chip, the ASIC advantage vanishes.



Time-space tradeoffs and memory-hardness

Clearly, there should be no memoryless equivalent (thus
memory-hardness).

Time-space tradeoff: how time grows if space is reduced.

Time

Space

Normal computation

S

T

T = f (1/S).

Linear f means equal trading of space for time. We want f to be
superpolynomial.



Password Hashing Competition (2013-2015)

Requirements for a new scheme:

• Maximum cracking cost per password on all platforms;

• Tunable time, memory parameters.

• Security against time-space tradeoffs;

• Transparent design;

• Flexibility.

• Ideally, side-channel protection (missing in scrypt) and tunable
parallelism.

Timeline

• 2013: Call for submissions.

• Feb 2014: 24 submissions.

• Dec 2014: 9 second-phase candidates.

• Jul 2015: 1 winner (Argon2), 4 special recognitions: Catena,
Lyra2, yescrypt and Makwa (delegation hashing).



How we designed Argon2



Design of Argon2

To facilitate analysis, we selected the simplest secure mode of
operation:

G GG

ii− 1 i+ 1φ(i+ 1)φ(i)

• Fill memory blockwise;

• Each block is a function of a previous and some older
(reference) block;

• The reference index may (better tradeoff protection) or may
not (side-channel protection) depend on the input;

• Weak and wide compression function G .



Argon2 unleashed

p lanes

4 slices

Password

Salt

Context
H H

Tag

Properties:

• Preimage and collision resistance;

• Adjustable and inseparable parallelism;

• Core: larger and shorter variant (1/5) of Blake2b;

• Exponential time-space tradeoff.

Any part of the Argon2 chain is memory-hard.



Performance

We took a number of steps to speed up the memory filling on the
x64 architecture:

• Wide registers and SIMD instructions;

• 1 KB blocks;

• Number of Blake2 rounds balanced with the memory latency.

Multithreaded Argon2 securely fills memory at 0.65 cycles/byte.

Memory bandwidth up to 5.5 GB/sec.

Try

https://github.com/P-H-C/phc-winner-argon2 [C89]

https://github.com/khovratovich/Argon2 [C++11]

https://github.com/P-H-C/phc-winner-argon2
https://github.com/khovratovich/Argon2


Apparently, this method of slowing down password
crackers has other applications...



III. Egalitarian computing



Why egalitarian

Bitcoin dream

• An egalitarian currency where every user could mine money on
his own laptop...

...and reality:

• A bunch of users with factory-size rigs and their own power
plants control > 50% of network in a single pool.



Why egalitarian

Bitcoin dream

• An egalitarian currency where every user could mine money on
his own laptop...

...and reality:

• A bunch of users with factory-size rigs and their own power
plants control > 50% of network in a single pool.



Slowing brute-force

Argon2 ensures that both defenders and attackers hash passwords
on the same platform (x86).

This is desirable for some other tasks to slow down brute force on
custom hardware:

• Password-based protocols (key agreement, secret sharing);

• Password-based encryption;

• Proofs of work for cryptocurrencies/blockchain;

• Client puzzles for denial-of-service protection.

Proof-of-work – a certificate that confirms that the prover made a
certain amount of computations (typically to slow him down for
certain time). Clearly the cost of the work must not fluctuate
across platforms.



Slowing brute-force

Argon2 ensures that both defenders and attackers hash passwords
on the same platform (x86).

This is desirable for some other tasks to slow down brute force on
custom hardware:

• Password-based protocols (key agreement, secret sharing);

• Password-based encryption;

• Proofs of work for cryptocurrencies/blockchain;

• Client puzzles for denial-of-service protection.

Proof-of-work – a certificate that confirms that the prover made a
certain amount of computations (typically to slow him down for
certain time). Clearly the cost of the work must not fluctuate
across platforms.



Equihash

Memory-hard proof-of-work based on Generalized Birthday
(k-XOR) problem [NDSS 2016]

I

A
Wagner’s
algorithm

H
Difficulty
filter

V

(x1, x2, . . .)

0

n, k

for 2k-XOR

?

x86/GPU-oriented 700-MB proof is 120 bytes long.

Good for ASIC-resistant client puzzles.

Apparently, any NP-complete problem is a natural candidate for a
memory-hard proof-of-work...



Egalitarian computing

Egalitarian computing ensures that legitimate
users and attackers are equal as they are forced to
use the same platform.



How?

Suppose you develop a scheme where the exact output value is
not important (encryption, signature, etc.).

Amalgamate the computation with a memory-hard function
such as Argon2.

If you already use some CPU time, why not using the available
memory for that period?



Alteration

Alter the computing: inject memory-hard blocks in between the
subfunction calls.

Argon2

h1 h2 hT

In Out

h1 h2 hT

In Out

Maybe even feed them back to Argon2 (may need stregthening the
compression function).



Memory-hard encryption



Memory-hard encryption

Password-based disk encryption:

• Encryption by chunks with password-based key;

• Trial decryption requires only a few blockcipher calls;

• Passwords can be tried offline.

We propose to bind it to a memory-hard function to make
encryption and decryption run on the same hardware and
non-outsourceable.



Memory-hard encryption

Disk encryption with memory-hard function based on Zaverucha’s
idea of using All-or-Nothing transform (or another scheme without
online decryption):

pwd H

H
K1

random

m1

C′′
1

E

C′′
2

m2

K0

H

C1 C2 Cq+1

Argon2

header body

K1 K1

K0 K0

ECB
E

ECB

E
CBC

E
CBC

E
CBC

• Any chunk size;
• Any memory size;
• No way to precompute either part.



MTP: memory-hard proof-of-work based on Argon2

The PC-oriented 2 GB-proof is 180 KB long (faster but longer
than Equihash).

I

Argon2

Φ

Merkle tree

N

H

Nonce

i1

H

i1

iL

H

iL

Y

d trailing zeros?
No Yes

Open 2L blocks

Parallelism inevitable so bandwidth-hardness.



New world

Egalitarian computing

• deems 6-letter passwords secure;

• brings back 80-bit keys;

• renders DoS attacks harder;

• suffrages blockchain users.

It is a chance to revert Moore’s law.



Cryptography

Some dirty crypto in

• Tradeoff (time-space) cryptanalysis (Asiacrypt 2015);

• Memory-hardness proofs (ePrint on scrypt);

• Memory-hard modes of operation (Argon2 – Euro S&P 2016);

• Asymmetric proof-of-work based on (NP-)hard problems
(NDSS 2016);

• Memory-hard obfuscation and white-box cryptography
(Asiacrypt 2014).



God may have made men, but Samuel Colt made
them equal

Use Egalitarian Computing


