On Chaskey

Work in progress...

Gaëtan Leurent

Inria

ESC 2015
Chaskey

- Fast lightweight MAC, without nonce
- CBC-MAC with an Even-Mansour cipher
- Birthday security
 - 128-bit key
 - 128-bit state
 - Security claim: 2^{48} data, 2^{80} time.

- Sponge based, no permutation inverse

Gaëtan Leurent (Inria)
On Chaskey
Chaskey permutation

Mini Siphash
- ARX
- 32-bit words
- 128-bit state
- 8 rounds
Cryptanalysis of ARX schemes

- No iterative differential/linear trails
- Small difference in the middle and propagate

- Only short trails with high probability
- Can we combine two trails?

Complexity vs. Rounds

Gaëtan Leurent (Inria)
Cryptanalysis of Chaskey

- Use single-block messages
 - Chaskey becomes an Even-Mansour cipher

\[m_0 \oplus K \oplus K' \rightarrow \pi \rightarrow \tau \]

- No decryption oracle
 - Boomerang not possible
 - Differential-Linear cryptanalysis does not require \(\pi^{-1} \)
Cryptanalysis of Chaskey

- Use single-block messages
 - Chaskey becomes an Even-Mansour cipher

\[K \oplus K' \]

- No decryption oracle
 - Boomerang not possible
 - Differential-Linear cryptanalysis does not require \(\pi^{-1} \)
Differential-Linear Cryptanalysis

- Divide E in two sub-ciphers $E = E_2 \circ E_1$
 - Let $y = E_1(x)$, $z = E_2(y)$
- Find a differential $\delta \rightarrow \gamma$ for E_1
 - $\Pr[E_1(x \oplus \delta) = E_1(x) \oplus \gamma] = p$
- Find a linear approximation $\alpha \rightarrow \beta$ of E_2
 - $\Pr[\alpha \cdot y = \beta \cdot E_2(y)] = \frac{1}{2}(1 + \varepsilon)$

- Query a pair $(x, x' = x \oplus \delta)$:

 $y \oplus y' = \gamma$ \hspace{1cm} proba p (1)

 $\alpha \cdot (y \oplus y') = \alpha \cdot \gamma$ \hspace{1cm} proba $\approx p + \frac{1}{2}(1 - p) = \frac{1}{2}(1 + p)$ (2)

 $\beta \cdot z = \alpha \cdot y$ \hspace{1cm} proba $\frac{1}{2}(1 + \varepsilon)$ (3)

 $\beta \cdot z' = \alpha \cdot y'$ \hspace{1cm} proba $\frac{1}{2}(1 + \varepsilon)$ (4)

 $\beta \cdot (z \oplus z') = \alpha \cdot \gamma$ \hspace{1cm} proba $\frac{1}{2}(1 + p\varepsilon^2)$ (5)

- Distinguisher with complexity $\approx p^{-2}\varepsilon^{-4}$
Application to Chaskey

▶ Accurate analysis of differential-linear attack is hard [BLN, FSE’14]
 ▶ Proba for wrong pair is not 1/2
 ▶ Many differential trails with same δ
 ▶ Many linear trails with same β

▶ Evaluate middle rounds experimentally
 ▶ Shorter trails $\delta \rightarrow \gamma', \alpha' \rightarrow \beta$
 ▶ Single bit difference γ'
 ▶ Single bit mask α'
 ▶ Eval $\Pr[\alpha' \bullet (E_2(x) \oplus E_2(x \oplus \gamma')) = 1]$
 ▶ Biased output bit, with 1-bit input difference
 ▶ Select the best single bit γ', α'
A 6-round distinguisher

- E_1: 1 round, $p = 2^{-5}$
 - $v_0[26], v_1[26], v_2[6, 23, 30], v_3[23, 30] \rightarrow v_2[22]$

- E_2: 4 rounds, $b \approx 2^{-6.05}$
 - $v_2[22] \rightarrow v_2[16]$

- E_3: 1 round, $\varepsilon \approx 2^{-2.6}$
 - $v_2[16] \rightarrow v_0[5], v_1[23, 31], v_2[0, 8, 15], v_3[5]$

- Differential-linear bias: $p \cdot b \cdot \varepsilon^2 \approx 2^{-16.25}$

- Distinguisher with complexity $c/p^2b^2\varepsilon^4 \approx c \cdot 2^{32.5}$
Improved attack

1. We guess some key-bits in order to increase the probability of the linear and differential trails.

2. Partition the data, and keep subsets with higher bias.

3. Multiple differentials and structures

- Techniques inspired by:
 - Improved linear cryptanalysis of addition [Biham & Carmeli, SAC ’14]
 - Salsa20 Probabilistic Neutral Bits [AFKMR, FSE ’08]
Improved linear

First non-linear operation

\[x = (a \oplus k_a) \; \boxplus \; (b \oplus k_b) \quad \tilde{a} = a \oplus k_a, \; \tilde{b} = b \oplus k_b \]

- **Goal**: predict bit \(x[k] \) for inputs \((a, b) \)

- **Classic linear**: \(x[k] \approx a[k] \oplus b[k] \oplus b[k-1] \)

 \[Pr[x[k] = a[k] \oplus b[k] \oplus b[k-1]] = \frac{3}{4} \]

- **Guessing** key bits gives bits of \(\tilde{a} \) and \(\tilde{b} \)
First non-linear operation

\[x = (a \oplus k_a) \oplus (b \oplus k_b) \]

\[\tilde{a} = a \oplus k_a, \quad \tilde{b} = b \oplus k_b \]

- If \((\tilde{a}_{k-1}, \tilde{b}_{k-1}) = (0, 0)\), there is no carry
 \[
 \begin{array}{cccc}
 0 & \leftrightarrow & 0 \\
 ? & a & 0 & ?
 \end{array}
 \]
 \[
 \begin{array}{cccc}
 + & ? & b & 0 \\
 \hline
 ? & x & ? & ?
 \end{array}
 \]

- Therefore \(x_k = \tilde{a}_k \oplus \tilde{b}_k\)

- If \((\tilde{a}_{k-1}, \tilde{b}_{k-1}) = (1, 1)\), there is always a carry
 \[
 \begin{array}{cccc}
 1 & \leftrightarrow & 1 \\
 ? & a & 1 & ?
 \end{array}
 \]
 \[
 \begin{array}{cccc}
 + & ? & b & 1 \\
 \hline
 ? & x & ? & ?
 \end{array}
 \]

- Therefore \(x_k = \tilde{a}_k \oplus \tilde{b}_k \oplus 1\)

- We throw out one half of the data

- But the distinguisher requires 4 times less data
Improved linear

First non-linear operation

\[x = (a \oplus k_a) \oplus (b \oplus k_b) \]

\[\tilde{a} = a \oplus k_a, \quad \tilde{b} = b \oplus k_b \]

- If \((\tilde{a}_{k-1}, \tilde{b}_{k-1}) = (0, 0)\)
 there is no carry

 \[
 \begin{array}{cccc}
 0 & 0 \\
 \downarrow & \downarrow \\
 ? & a & 0 & 0 \\
 \hline \\
 + & ? & b & 1 & 0 \\
 \hline \\
 \end{array}
 \]

- Therefore \(x_k = \tilde{a}_k \oplus \tilde{b}_k\)

- We throw out one fourth of the data

- But the distinguisher requires 4 times less data

- If \((\tilde{a}_{k-1}, \tilde{b}_{k-1}) = (1, 1)\)
 there is always a carry

 \[
 \begin{array}{cccc}
 1 & 1 \\
 \downarrow & \downarrow \\
 ? & a & 0 & 1 \\
 \hline \\
 + & ? & b & 1 & 1 \\
 \hline \\
 \end{array}
 \]

- Therefore \(x_k = \tilde{a}_k \oplus \tilde{b}_k \oplus 1\)
Improved linear

First non-linear operation

\[x = (a \oplus k_a) \boxdot (b \oplus k_b) \]

\[\tilde{a} = a \oplus k_a, \quad \tilde{b} = b \oplus k_b \]

- If \((\tilde{a}_{k-1}, \tilde{b}_{k-1}) = (0, 0) \)
 there is no carry

\[
\begin{array}{cccc|c}
0 & 0 & 1 & 1 & \tilde{b}_{k-1} \\
\tilde{a}_{k-1} & \tilde{a}_{k-2} & 0 & 1 & 0 & 1 & \tilde{b}_{k-2} \\
0 & 0 & + & + & + & ? \\
0 & 1 & + & + & ? & - \\
1 & 0 & + & ? & - & - \\
1 & 1 & ? & - & - & - \\
\end{array}
\]

- Therefore \(x_k = \tilde{a}_k \oplus \tilde{b}_k \)

- We throw out one fourth of the data

- But the distinguisher requires 4 times less data
Improved linear

- We can also predict some input bits of the next additions
- But it gets messy...

Experimental approach

- Identify candidate bits (by hand)
- Collect data:
 - Filter according to candidate bits
 - Measure bias
- Build vector of bias, and look for symmetries
 - Symmetries allow the reduce the number of filtering bits
Improved differential

First non-linear operation

\[
x = (a \oplus k_a) \boxplus (b \oplus k_b), \quad x' = (a' \oplus k_a) \boxplus (b' \oplus k_b)
\]

\[
\tilde{a} = a \oplus k_a, \quad \tilde{b} = b \oplus k_b
\]

- **Goal:** generate pairs \((a, b)\) with \(x \oplus x' = 2^k\)

- **Classic differential:** \(a \oplus a' = 2^k, b = b'\)
 - \(Pr[x \oplus x' = 2^k] = 1/2\)

- **Guessing** key bits gives bits of \(\tilde{a}\) and \(\tilde{b}\)
Improved differential

First non-linear operation

\[x = (a \oplus k_a) \boxtimes (b \oplus k_b), \quad x' = (a' \oplus k_a) \boxtimes (b' \oplus k_b) \]

\[\tilde{a} = a \oplus k_a, \quad \tilde{b} = b \oplus k_b \]

- If \(\tilde{b}_{k-1} = 0 \), no carry

\[
\begin{array}{cccc}
0 & \rightarrow & \text{If } \tilde{b}_{k-1} = 1, \text{ carry} \\
- & - & x & - \\
+ & - & - & 0 & - \\
- & - & x & - \\
\end{array}
\]

- We throw out one half of the data

- But the distinguisher requires 4 times less data
Improved differential

First non-linear operation

\[x = (a \oplus k_a) \boxtimes (b \oplus k_b), \quad x' = (a' \oplus k_a) \boxtimes (b' \oplus k_b) \]

\[\tilde{a} = a \oplus k_a, \quad \tilde{b} = b \oplus k_b \]

- If \(\tilde{b}_{k-1} = 0 \), no carry
- If \(\tilde{b}_{k-1} = 1 \), carry

- Use multiple differentials: multiple bits input difference
 - Encrypt structure of plaintexts, build pairs depending on key guess
- If different signs, no carry

 \[
 \begin{array}{c}
 n \\
 \hline
 -u & n & - & - \\
 + & - & - & 1 & - & - \\
 - & - & 1 & - & - \\
 \end{array}
 \]

- If same signs, carry

 \[
 \begin{array}{c}
 u \\
 \hline
 -u & u & - & - \\
 + & - & - & 1 & - & - \\
 \end{array}
 \]

- We throw out one fourth of the data
- But the distinguisher requires 4 times less data
Improved differential

- We can also predict some input bits of the next additions
- But it gets messy...

Experimental approach

- Identify candidate bits (by hand)
- Collect data:
 - Filter according to candidate bits
 - Measure probability
- Build vector of probabilities, and look for symmetries
 - Symmetries allow the reduce the number of filtering bits

Remark

Need more key bit guesses to improve differential than to improve linear
Improved 6-round attack

- To summarize:
 half round at the top and bottom almost for free

- Improved 6 round attack
 - Implemented
 - Algorithmic tricks to reduce the time complexity (using counters)

- Data complexity: 2^{25} (v. 2^{35})
- Time complexity: 2^{29} (elementary operations)
- Recovers 13 key bits with high probability

- TODO: full key recovery
A 7-round attack?

- The attack can be extended to 7 rounds

- E_1: 1.5 round
 - $p = 2^{-17}$

- E_2: 4 round
 - Best bias: $v_0[31] \rightarrow v_2[20]$, $b \approx 2^{-6.1}$

- E_3: 1.5 round
 - $\varepsilon \approx 2^{-7.6}$

- Simple distinguisher: bias $\approx 2^{38.3}$

- Work in progress to identify good bits

- Expected data complexity $\approx 2^{45} - 2^{48}$
Conclusion

- Differential-Linear attack quite efficient for ARX designs
- Security margin of Chaskey rather slim (7/8 rounds broken)

Comparison with SipHash

- Same round function with 64-bit words
- Fewer rounds
- Inputs smaller blocks in the state
 - Input differential can not affect the full state
 - DL can analyze fewer rounds backward
- 4 output words are xored together
 - Smaller bias with forward rounds